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Abstract
Using a variational approach, the binding energy of hydrogen impurities in
(i) spherical quantum dots with parabolic confinements in an electric field and
(ii) disc-like quantum dots with parabolic lateral confinements in a parallel
electric field are calculated. Both the confinement and the electric field effects
on the binding energy are investigated in detail.

1. Introduction

The important role of the physics of impurity states for the understanding of electronic
properties of bulk semiconducting materials has been widely recognized since the early days
of semiconductor science [1, 2]. In the last few decades, because of the great interest in
the physics and technological applications of low-dimensional semiconductor structures such
as quantum wells, quantum wires, and quantum dots [3–5], the problem of impurity states
has received renewed attention. While for the quantum wells the impurity states have been
studied in great detail [6, 7], the problem has been less thoroughly investigated for quasi-zero-
dimensional systems of quantum dots (QDs). The main features to consider in relation to
QDs are geometrical shape, size, and the confining potential. The shallow donor states in the
simplest models of QDs with square (infinite or finite) potential wells were studied early on in
a number of works [8, 9]. The effects of parabolic confining potentials on the binding energy
of hydrogen impurities were recently calculated by Xiao et al [10], Bose and Sarkar [11, 12],
and Varshni [13], using a variational method. It should be noted that virtually all of the studies
of references [8–13] have been exclusively limited to the effect of confining potentials, and,
moreover, all of these models are characterized by spherical symmetry which allows one to
reduce the problem to that of solving a simpler equation in the radial variable. The spherical
symmetry may be violated by different factors such as dot shapes, and confining or external
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field potentials. The effects of such ‘symmetry-breaking’ factors on the binding energy of
hydrogen impurities in QDs, although fundamental and important for applications, have been
even less studied [14, 15].

Concerning the confining potential, we would note that the results of a numerical self-
consistent solution of the Poisson and Schrödinger equations in the Hartree approximation
performed by Kumar et al [16] strongly support a parabolic form for the confining potentials
for QDs fabricated from GaAs/AlGaAs heterostructures. Note also the good agreements
between experimental data on various electronic characteristics and corresponding theoretical
calculations, using the parabolic form for the confining potentials, for a large class of both
three-dimensional (3D) [4, 5, 17] and two-dimensional (2D) [4, 5, 18] QDs.

The aim of this work is to calculate the binding energy of a hydrogen impurity, located
in the centre of (1) spherical QDs with parabolic confinement in an external electric field
and (2) 2D disc-like QDs with a lateral parabolic confinement in a parallel electric field.
Unlike in the case of an external magnetic field [15], where two parabolic potentials, magnetic
and confining, can partly be added together, an electric field—as was recently discussed by
Murillo and Porras-Montenegro [14]—moving the parabolic confining potential along the field
direction by a distance depending on both the field intensity and the confining potential strength
results in an additional asymmetry of the problem. Taking this into account, two-parameter
trial variational functions are suggested and the binding energies are calculated for the ranges
of magnitudes of both the confining and the electric field potentials of practical interest; this
gives, on one hand, the correct values of the binding energy in the limit case of zero field and,
on the other hand, the electric field-induced corrections to the binding energy for both kinds
of QD under study with different sizes of confining potential.

2. Theory

Our study starts with the standard dimensionless effective-mass Hamiltonian of a hydrogen
impurity in a confining potential VC and in an external electric field:

H = −∇2 − 2/r + VC + F · r. (1)

Here, F is the dimensionless electric field; the impurity is assumed to be located at the centre
of the QD, which is also chosen as the origin of the coordinate system. Throughout this work,
effective atomic units are used, so all energies are measured in units of the effective Rydberg
R∗ ≡ m∗e4/2h̄2ε2 and all lengths are in units of the effective Bohr radius aB ≡ h̄2ε/m∗e2,
wherem∗ is the electron effective mass, e is the elementary charge, ε is the dielectric constant
of the dot materials. The confining potential VC is assumed to have the parabolic form

VC = β2r2. (2)

In the model, the polarization and image-charge effects are neglected. Such a model
could be used for describing, for example, QDs fabricated from the GaAs/AlGaAs hetero-
structures [4, 5].

Generally, the binding energy is defined as

EB = E0 − EC (3)

where EC and E0 are ground-state energies of the Hamiltonian of equation (1) with and without
the Coulomb term, respectively.

2.1. Spherical QDs

The effect of an electric field on the binding energy of hydrogen impurities in bulk
semiconductors is well known [2]. In addition, without external fields the effect of parabolic
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confining potentials on the binding energy of hydrogen impurities in spherical QDs (S-QDs)
has been investigated in detail [10–13]. To clarify how these two factors are combined in
affecting the binding energy, we rewrite the Hamiltonian of equations (1), (2) for S-QDs in the
form

H = −∇2 − 2√
ρ2 + z2

+ β2

[
ρ2 +

(
z +

F

2β2

)2]
− F 2

4β2
(4)

where the z-axis is chosen along the electric field direction, and ρ2 = x2 + y2. From this
expression it is clear that the electric field moves the location of the harmonic confining
potential along the field direction by a distance of −F/2β2, and, at the same time, shifts the
total energy by −F 2/4β2, while the ‘strength’ of the parabolic confining potential is still the
same β-value. Leaving aside the constant term F 2/4β2, in the Hamiltonian of equation (4)
the field F then appears only in combination with the confining parameter β in the distance
expression for F/2β2, which unambiguously implies a strong correlation between two effects,
confining and electric field, on the impurity states. Furthermore, since the characterization
length Lc = 1/

√
β of the parabolic confining potential is often considered the effective radius

of the QD, it is meaningful to define the ratio F = (F/2β2)/Lc ≡ F/2β3/2 as the measure of
the electric field F for a given value of β (i.e. given QD). The quantity F , i.e. the ‘effective
electric field’, will then be the main parameter in the problem under study, and, certainly, all
calculations should be performed only for the range of F � 1.

Without the Coulomb term, the ground-state energy of the Hamiltonian (4) is well known:

E0 = 3β − βF2. (5)

Taking into account the Coulomb potential, the Hamiltonian (4) cannot be solved analytically.
To calculate the ground-state energy EC , and then the binding energy EB of equation (3), we
will use a variational approach. In order to choose an adequate trial function, it is important
to note that, as is well known, the matrix diagonal element of the electric field potential can
only be finite for states of undefined parity. An even or odd function should not be used as
the trial function. In view of this and of the fact that the total potential in the Hamiltonian
of equation (4) consists of only two terms, corresponding to the hydrogen Coulomb centre at
the coordinate origin and to the three-dimensional harmonic oscillator located on the z-axis at
z = −F/2β2, we can suggest a trial function of the form

� = C exp(−ar) exp{−(β/2)[ρ2 + (z + bβ−1/2F)2]} (6)

where C is a normalized constant, and a and b are variational parameters.
It is interesting to note that the Hamiltonian of equation (4) has the same form as that for

the problem of an off-centre hydrogen impurity in a QD with parabolic confinement without
an external electric field, where the separation between the impurity location and the parabolic
dot centre is equal to F/2β2. The binding energy in such a problem was recently calculated by
Bose [11], using a trial function similar to that of equation (6), but with only one parameter, a
(i.e. equation (6) with b = 1). In view of the symmetry of the Hamiltonian (4) there is clearly a
question as regards the accuracy of such one-parameter trial functions as that of reference [11],
where the asymmetry associated with the field is not accounted for adequately. The important
role of a second parameter b was especially emphasized by Galiskii et al [19] in relation to the
analogous problem of calculating the polarizability of a hydrogen atom. For even the simpler
problem of an on-centre hydrogen impurity in spherical QDs without external fields, Varshni
[13] also shows that inclusion of the second parameter associated with the confining potential
gives more accurate results for the binding energy. Thus, we choose the trial function with
two variational parameters of equation (6).



2566 Nguyen Van Lien and Nguyen Manh Trinh

Substituting the trial function of equation (6) into the Hamiltonian H of equation (4), we
obtain
〈�|H|�〉
〈�|�〉 = 3β − βb2F2 − a2 + β(1 − b)/b

+ [(a − 2)I0 − 2βaI2 + 2β1/2abJ1 + 2β3/2(b − 1)J2]/I1 (7)

where

In = (1/F)
∫ ∞

0
rn exp (−βr2 − 2ar) sinh(2bβ1/2Fr) dr

Jn =
∫ ∞

0
rn exp (−βr2 − 2ar) cosh(2bβ1/2Fr) dr

and where the constant term −F 2/4β2 ≡ −βF2 is not yet included.

2.2. Disc-like QDs

Let us consider a 2D disc-like QD (2D DL-QD) in the (x, y) plane in a parallel electric field.
Choosing the x-axis along the field direction, the Hamiltonian of equations (1), (2) for 2D
DL-QDs can then be written in a form similar to that for the S-QDs of equation (4):

H = −∇2 − 2√
x2 + y2

+ β2

[
y2 +

(
x +

F

2β2

)2]
− F 2

4β2
. (8)

The ground-state energy of this Hamiltonian without the Coulomb potential is

E0 = 2β − βF2 (9)

where the effective electric field F has already been defined: F = F/β3/2. In order to
calculate the ground-state energy EC , following the route discussed above for S-QDs, we use
a variational approach with a trial function of the form

� = C exp(−aρ) exp{−(β/2)[y2 + (x + bβ−1/2F)2]}. (10)

Here, the meanings of C, a, and b are the same as those explained below equation (6), and
ρ =

√
x2 + y2.

Using the trial function of equation (10), from the Hamiltonian of equation (8) we obtain
the variational energy (without the constant term −βF2):

〈�|H|�〉
〈�|�〉 = 2β − a2 − βb2F2

+ [(a − 2)J 0
0 − 2aβJ 0

2 + 2abβ1/2FJ 1
1 + 2(b − 1)βF2J 1

2 ]/J 0
1 (11)

where

J nm =
∫ ∞

0
xn exp (−βx2 − 2ax)In(2bβ

1/2F) dx

with In(x) being the nth-order hyperbolic Bessel function [20, 21].
In the expressions for the variational energies of equations (7) and (11), a and b are

variational parameters, while β is the parameter characterizing the QD under study. Given
β, the quantity F measures the electric field. Minimizing the energies of equation (7) or
equation (11), including the constant term −βF2, we will obtain the ground-state energies
EC ≡ EC(β,F), respectively for S-QDs or 2D DL-QDs. Further, from equation (3) with E0 of
equation (5) for S-QDs or equation (9) for 2D DL-QDs, the binding energy will be determined.
The field-induced corrections �EB(β, F ) = EB(β, F ) − EB(β, 0) then describe the effect of
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the electric field on the binding energy of a hydrogen impurity in QDs of the given β, while the
zero-field binding energy EB(β, 0) describes the confinement effect alone, which for S-QDs
should be compared with the results of Xiao et al [10] and Varshni [13]. For the 2D DL-QDs,
we do not know of any work dealing with calculations of even zero-field binding energies
EB(β, 0) which could be referred to for comparison.

3. Numerical results and discussion

As mentioned above, all energies in this work are measured in units of R∗. Taking GaAs as
a typical QD material, one has [22] m∗ = 0.063m0, ε = 12.9, aB = 10.19 nm, and therefore
R∗ = 5.478 meV. For these values of the material parameters, the value of the effective field
F = 1 corresponds to a field of ≈5.4 × 105 V m−1 or ≈3 × 104 V m−1 for β = 1 or 0.1,
respectively.

Figure 1 shows the binding energy EB as a function of the effective field F for S-QDs
with β = 4, 2, 1, 0.5, 0.25, and 0.1 (figure 1(a)) and for 2D DL-QDs with β = 1, 0.5, 0.25,

Figure 1. The binding energy EB as a function of the effective electric field F : (a) for S-QDs with
β = 4, 2, 1, 0.5, 0.25, and 0.1 (from top); (b) for 2D DL-QDs with β = 1, 0.5, 0.25, and 0.1
(from top).
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and 0.1 (figure 1(b)). The chosen range of β for S-QDs in figure 1(a) implies that we are only
interested in the S-QDs with intermediate or strong confinements—most relevant experimental
measurements are also on such objects. For the 2D DL-QD case, since, in reality, any DL-QD
has of course a finite thickness, the structure cannot be considered two-dimensional unless its
thickness is much less than its longitudinal size. Since the dot thickness is often not less than
≈3–7 nm (i.e. ≈0.3–0.7 aB for GaAs) [4, 5, 16, 22], the dot longitudinal size LC should be
not less than some tens of nm (i.e. β should be not larger than 1).

For both the S-QDs and the 2D DL-QDs, as is clear in figure 1, the binding energy
decreases as the field increases and the relative reduction

δEB ≡ (EB(F = 0)− EB(F = 1))/EB(F = 0)

slightly goes down with decreasing β: δEB ≈ 22% for β = 4, and ≈8% for β = 0.1 in
figure 1(a) for S-QDs and δEB ≈ 16% for β = 1, and ≈2% for β = 0.1 in figure 1(b) for
2D DL-QDs. (Noting again that the problem is meaningless when F > 1, and the difference
in range of real electric fields for various curves associated with various values of β in the
figure, it is clear that one should be careful when comparing the field dependence behaviours
of different curves.)

In particular, the zero-field binding energies EB(β) ≡ EB(β,F = 0), describing the effect
of the confining potential alone, were calculated for many points in the chosen ranges of β-
values to investigate how EB depends on β. The numerical results obtained seem to fit well to
the simple approximate expressions

EB(β) ≈
{ −0.194β2 + 1.691β + 1.000 (S-QDs) (12a)

−0.284β2 + 1.915β + 4.009 (DL-QDs). (12b)

It is important to note that these fitting expressions, deduced from the data for the limited ranges
of β (from 0.1 to 4 for S-QDs and from 0.1 to 1 for 2D DL-QDs), could not be considered valid
for all β. In the limit of very strong confinements (large β), the accuracy of the effective-mass
approximation might be questioned, and, certainly, the central-cell corrections should be taken
into account in calculating the binding energy [5, 9]. The ranges of β chosen in this study
simply correspond to most QDs investigated experimentally [4, 5, 17, 18, 23].

We would like to mention here that our results for the zero-field binding energies EB(β)
for the S-QDs are in good agreement with those of Xiao et al [10] and of Varshni [13]. For
example, for the case of the largest hard-boundary radiusR = 7, the binding energies presented
in reference [13] are 1.490 63, 1.680 22, and 1.849 63 for β = 0.2, 0.3, and 0.4, respectively,
while our calculations give corresponding values of 1.489 46, 1.680 20, and 1.849 63. The
fact that the two results for β = 0.4 exactly coincide shows unambiguously that for such
strong confinement the distance of R = 7 (in units of aB) can really be considered infinite,
and, consequently, the effect of the hard boundary located there on the binding energy is not
yet visible.

To see more clearly the electric field effect, the field-induced reductions of the binding
energies, �EB(β,F) = EB(β,F) − EB(β, 0), are presented in figure 2(a) and figure 2(b) for
the S-QDs and 2D DL-QDs, respectively. Expressing the parameter F in the real electric field
F , with the aim of achieving practical applicability, it seems that for both kinds of QD the data
follow well the square-power law for F :

�EB(β, F ) = −Q(β)F 2 (13)

whereQ(β) is approximately estimated as

Q(β) ≈
{

0.256β−2 − 0.139β−1 for S-QDs (14a)
0.251β−2 − 0.013β−1 for DL-QDs. (14b)
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Figure 2. The negative of the electric field-induced corrections, −�EB , to the binding energy as a
function of the effective electric field F : (a) for S-QDs with β = 4, 2, 1, 0.5, 0.25, and 0.1 (from
top); (b) for 2D DL-QDs with β = 1, 0.5, 0.25, and 0.1 (from top).

While the field dependence ∝−F 2 of the field-induced corrections �EB is perhaps easy to
guess like that for the bulk problem, our calculations suggest the expressions of equation (14)
for the factors Q(β) for the ranges of β studied. In reality, since the QD size LC is often
not less than several aB , i.e. β is much less than 1, these factors Q(β) could then even be
approximated in the simpler formQ(β) ≈ 0.25β−2 for both the kinds of QD.

Finally, in the case of DL-QDs, though the present study is devoted to the two-dimensional
model, we have performed some calculations, taking into account a finite thickness of dot. To
this end, we simply added to the parabolic lateral confining potential VC = β2ρ2 an infinite
square potential along the z-axis: Vz = 0 for |z| < d/2 and =∞ for z � d/2, where d is
the dot thickness. The field direction is still parallel to the (x, y) plane. The ground-state
energy E0 is just given by the well-known expression: E0 = 2β − βF2 + π/d2. The trial
function can be chosen in the form defined by the product of the function of equation (9)
with the well-known eigenfunction of the infinite square potential Vz. For dots with the same
value of β of 0.25 (i.e. LC = 2), but with different thicknesses, d = 0.3, 0.5, and 0.7, the
zero-field binding energies obtained are 3.573, 3.241, and 3.001, respectively, which should be
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compared with the value of 4.472 for the 2D DL-QD with d = 0. Thus, our calculations show
a considerable decrease of EB(0) with increasing dot thickness even at d ≈ 0.5. However, the
calculations also show that for each thickness the β-dependence of EB still seems to follow
well the relation of equation (12b) with a shift associated with the last constant term only. And,
more important, for all cases for which calculations were performed (d � 0.7, LC � 2), the
field-induced reductions of the binding energy�EB(β, d,F) = EB(β, d,F)−EB(β, d, 0) are
almost independent of d and still well described by the same expression, equation (14b),
as was suggested for the 2D model. In reality, besides the hard boundary there should
also be a confining potential along the z-direction, which would certainly result in a smaller
effective thickness of dots and therefore favour further applying the 2D DL-QDs model, even
quantitatively.

4. Conclusions

We calculated the binding energies of hydrogen impurities in the centres of S-QDs with
parabolic confinement in an external electric field and of 2D DL-QDs with parabolic lateral
confinement in a parallel electric field, using a variational method. Simple two-parameter
trial functions were suggested that, on one hand, give correct values for the binding energies
in the limit case of zero field and, on the other hand, allow us to calculate the field-induced
corrections to the binding energy for the ranges of electric field and dot size corresponding to
experiments. The main results are, for easy use, summarized in the empirical expressions of
equations (12), (14), describing the effects of the confinement and of the electric field on the
binding energy. As regards the finite-thickness effect in DL-QDs, our calculations show that,
for the ranges of parameters studied, though the binding energy itself considerably decreases
with increasing thickness, the field-induced corrections are almost insensitive to it and are still
well described by equation (14b). The suggested expressions would be very simple to compare
with experiments. However, regrettably, we cannot find any data suitable for this.

We note that, although, in reality, the 3D etched GaAs/AlGaAs QDs, for example, are
cubic, since the size of the cubes is always much greater than the characteristic length LC
of the confining potentials, the effect of the cubical hard boundaries on the binding energy is
relatively small, and therefore the present model should be applicable. As regards the DL-QDs,
as discussed above, experimental data support 2D electronic properties of such the structures
as measured in references [18, 23]. Thus, it is hoped that this work might provide some
useful insight into the physics of donor states in QDs and stimulate experimental interest in
the problem.
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